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Binary Code Extraction and Interface Identification
for Security Applications

Juan Caballero∗†, Noah M. Johnson†, Stephen McCamant†, and Dawn Song†
†UC Berkeley ∗Carnegie Mellon University

Abstract

Binary code reutilization is the process of automatically identifying the interface and extracting the
instructions and data dependencies of a code fragment from an executable program, so that it is self-
contained and can be reused by external code. Binary code reutilization is useful for a number of
security applications, including reusing the proprietary cryptographic or unpacking functions from a
malware sample and for rewriting a network dialog. In this paper we conduct the first systematic study
of automated binary code reutilization and its security applications.

The main challenge in binary code reutilization is understanding the code fragment’s interface. We
propose a novel technique to identify the prototype of an undocumented code fragment directly from
the program’s binary, without access to source code or symbol information. Further, we must also
extract the code itself from the binary so that it is self-contained and can be easily reused in another
program. We design and implement a tool that uses a combination of dynamic and static analysis to
automatically identify the prototype and extract the instructions of an assembly function into a form
that can be reused by other C code. The extracted function can be run independently of the rest of the
program’s functionality and shared with other users.

We apply our approach to scenarios that include extracting the encryption and decryption routines
from malware samples, and show that these routines can be reused by a network proxy to decrypt en-
crypted traffic on the network. This allows the network proxy to rewrite the malware’s encrypted traffic
by combining the extracted encryption and decryption functions with the session keys and the protocol
grammar. We also show that we can reuse a code fragment from an unpacking function for the unpacking
routine for a different sample of the same family, even if the code fragment is not a complete function.

1 Introduction

Often a security analyst wishes to reuse a code fragment that is available in a program’s binary, what we call
binary code reutilization. For example, a piece of malware may use proprietary compression and encryption
algorithms to encode the data that it sends over the network and a security analyst may be interested in
reusing those functions to decode the network messages. Further, the analyst may be interested in building
a network proxy that can monitor and modify the malware’s compressed and encrypted protocol on the
network. Also, for dialog rewriting [22,27] if some field of a network protocol is changed, other dependant
fields such as length or checksum fields may need to be updated. If those fields use proprietary or complex
encodings, the encoding functions can be extracted and deployed in the network proxy so that the rewritten
message is correctly formatted. Another application is the creation of static unpacking tools for a class of
malware samples [15]. Currently, creating a static unpacker is a slow, manual process. Frameworks have
emerged to speed up such manual analysis [13], but a faster approach would be to extract the unpacking
function from the malware sample and reuse it as a static unpacker.

At the core of these and many other security applications is binary code reutilization, an important
problem for which current solutions are either highly manual or very limited [1, 4, 5, 28]. In this paper
we conduct the first systematic study ofautomatic binary code reutilization, which can be defined as the
process of automatically identifying the interface and extracting the instructions and data dependencies of a
code fragment from an executable program, so that it is self-contained and can be reused by external code.
Reusing binary code is useful because for many programs, such as commercial-off-the-shelf applications



and malware, source code is not available. It is also challenging because binary code is not designed to
be reusable even if the source code it has been generated from is. The main challenge of binary code
reutilization is to interface with the code fragment that we want to reuse. The code fragment may not have
a function prototype available, for example because it was intended only for internal use, or it may not even
correspond to a function in the first place. Identifying a prototype for the binary code fragment enables reuse
of the code by generating and passing appropriate inputs. In addition, we want to extract the code fragment
itself, i.e., its instructions and data dependencies, so that it is self-contained and can be reused by other code,
independently of the rest of the functionality in the program. The self-contained code fragment can easily
be shared with other users and can be statically instrumented or rewritten, for profiling or to enforce a safety
policy on its memory accesses if it is untrusted. To summarize, binary code reutilization encompasses two
tasks: identifying the interface of the code fragment and extracting the instructions and data dependencies
of the code fragment so that it is self-contained.

Scope.Not all binary code can be reused. To reuse a binary code fragment, the fragment should have a clean
interface and be designed to perform a specific well-contained task, mostly independent of the remaining
code in the program. In this paper we mostly focus on reusing binary code fragments that correspond to
functions at the source code level, what we callassembly functions, because in structured programming a
function is the base unit of source code reuse. Functions are usually designed to perform an independent,
well-contained task and have a well-defined interface, thefunction prototype. In addition, we show that
a code fragment that does not correspond to a complete assembly function, but has a clean interface and
performs a well-contained task, can also be reused.

Reusing an arbitrary assembly function can be extremely challenging because the function interface can
be convoluted and the function can have complex side effects. Our approach handles common side effects
such as an assembly function modifying one of its parameters or accessing a global variable, and also
handles calls to standard library functions. But we exclude functions with a variable-length argument list
or functions that are passed recursive structures such as trees. We refer the reader to Section 2.3 for a more
detailed description of the problem’s scope. An important class of functions that we extract in this paper
are transformation functions, which include encryption and decryption, compression and decompression,
code packing and unpacking, checksums, and generally any function that encodes data. Such functions
are usually well-contained, have clean interfaces, limited side effects, and are interesting for many security
applications.

Approach. The main challenge in assembly function reutilization is identifying the interface of an assembly
function and generating a prototype for it so that it can be reused by other source code. This is challenging
because thefunction parametersthat comprise the prototype are not explicitly defined in the binary code
and also because they need to be expressed using variables and types, which do not exist in the binary code.
Our approach uses dynamic analysis to extract a parameter abstraction at the binary level (anassembly pa-
rameter) and then translate the assembly parameters into the formal parameters in the function’s prototype.
To extract assembly parameters from a given execution trace, our approach first identifies the inputs and
outputs for each function run, splits them into assembly parameters, identifies important attributes such as
the parameter type (input, output, input-output) and the parameter location (register, stack, table), and finally
combines this information across multiple function runs.

To extract the function’s body, i.e., the instructions that constitute the assembly function, we use the
observation that for reusing a binary code fragment a user often has no need to understand its inner workings.
For example, a security analyst may want to reuse the proprietary cipher used by some malware, together
with the session keys, to decrypt some data, without worrying about how the proprietary cipher works. For
these applications, complex reverse-engineering or decompilation methods are not necessary to recover the
function’s body as source code. We can leverage the support of current C compilers for inline assembly [2,
10] and generate a function with a C prototype but an inline assembly body. To extract the function’s
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body we use a combination of static and dynamic analysis that includes hybrid disassembly [36], symbolic
execution [31], jump table identification [26], and type inference techniques.

Because the extracted binary code runs in the same address space as a program that uses it, the same
security concerns apply to it as to an untrusted third-party library: a malicious extracted function might
attempt to call other functions in memory or overwrite the application’s data. If such attacks are a risk,
an isolation mechanism is needed to limit what the extracted code can do. In this work we process the
extracted code with a software-based fault isolation (SFI) tool to insert runtime checks that prevent the
extracted code fragment from writing or jumping outside designated memory regions (separate from the rest
of the program). We use PittSFIeld [34], an implementation of SFI for x86 assembly code that enforces
jump alignment to avoid overlapping instructions and includes a separate safety verifier.

We design and implement BCR, a tool that extracts code fragments from program binaries and wraps
them in a C prototype, so they can be reused by other C code. We use BCR to extract the encryption and
decryption routines from MegaD and Kraken, two widely used spam botnets, and show that these routines,
together with appropriate session keys, can be reused by a network proxy to decrypt encrypted traffic on
the network. Further, we show that the network proxy can also rewrite the malware’s encrypted traffic
by combining the extracted encryption and decryption functions with the session keys and the protocol
grammar. To show that we can reuse code fragments that are not complete functions as long as the code
fragments have a clean interface, we also extract the unpacking functions from two samples of Zbot, a trojan,
and use an unpacking fragment from one sample as part of the routine to unpack the other sample.

Other applications. In addition to the applications that we examine in this paper, binary code reutilization
is useful for many other applications. For example, it can be used to automatically describe the interface of
undocumented functions. It often happens that malware uses undocumented functions from the Windows
API, which are not described in the public documentation [9]. Projects to manually document such func-
tions [14] could benefit from our approach to automatically identify the interface of a binary code fragment.
Extracted functions could also be useful in the development of programs that interoperate with other pro-
prietary interfaces or file formats, by allowing the mixture of code extracted from previous implementations
with re-implemented replacements and new functionality. Another application is to determine whether two
pieces of binary code are functionally equivalent, for example to determine whether a vulnerability has been
fixed in the most recent version. Recent work has addressed this issue at the source code level by fuzzing
both pieces of source code and comparing the input-output pairs [30], but how to interface with a binary
code fragment to perform such fuzzing is an open problem. Finally, a security analyst may want to fuzz a
well-contained, security-sensitive function independently of the program state in which it is used.

Contributions:

• We propose a novel technique to identify the interface of a binary code fragment directly from the
program’s binary, without access to its source code. The interface captures the inputs and outputs of
the code fragment and provides a higher level parameter abstraction not available at the binary level.

• We design an approach to automatically extract a code fragment from a program binary so that the
code fragment is self-contained and can be reused by an external C program. The extracted code frag-
ment can be run independently of the rest of the program’s functionality, can be easily instrumented,
and can be shared with other users. We implement BCR, a tool that uses our approach to automatically
extract an assembly function from a given program binary.

• We reuse the encryption and decryption routines from two widely used spam botnets in a network
proxy that can rewrite their encrypted C&C traffic, when provided with the session keys and the C&C
protocol grammar. In addition, we extract the unpacking function from a widely used trojan, and show
that a code fragment belonging to that function can be reused by the unpacking function for a different
sample from the same family. Finally, we apply software-based fault isolation [34] to the extracted
functions to prevent them from writing or jumping outside their own isolated memory regions.
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2 Overview and Problem Definition

In this section we give an overview of the binary code reutilization problem, formally define it, outline the
scope of our solution, and present an overview of our approach.

2.1 Overview

Binary code reutilization comprises two tasks: 1) identifying the interface of the code fragment and format-
ting it as a prototype that can be invoked from other source code; and 2) extracting the instructions and data
dependencies of the code fragment so that it is self-contained and can be reused independently of the rest of
the program’s functionality.

The main challenge in binary code reutilization is identifying the interface of the code fragment, which
specifies its inputs and outputs. This is challenging because binary code has memory and registers rather
than named parameters, and has limited type and semantic information, which must be converted into a high
level prototype. In addition, the extracted code fragment needs to be self-contained, which in turn implies
that we need a recursive process that extracts any function called from inside the code fragment that we want
to extract (and from inside those callees), and that we need to account for the possible side effects from the
code fragment and its callees. For example, we need to identify and extract the data dependencies such as
global variables and tables that the code fragment uses.

Previous work on binary code reutilization is either highly manual or very limited [4, 5, 28]. As far as
we know we are the first ones to systematically study automatic binary code reutilization. Our goal is to
automate the whole process, with a focus on automatically identifying the code fragment’s interface. There
are two different representations for the extracted binary code: decompiled source code [4,28] and assembly
instructions [5, 28]. In this work we use inline assembly with a C prototype because inline assembly is the
most accurate representation of the code (it represents what gets executed) and because decompilation is not
needed for binary code reutilization. The use of inline assembly limits portability to the x86 architecture,
and requires compiler support, but the x86 architecture is still by far the most important architecture in
security applications, and commonly used compilers include rich support for inline assembly [2,10].

To reuse a binary code fragment, the code should have a clean interface and be designed to perform a
well-contained task, relatively independent of the remaining code in the program. Otherwise, if the extracted
code interface is not clean or the code performs several intertwined tasks and the user is only interested in one
of them, it becomes difficult to separate the relevant code and interface with it. In structured programming,
the above characteristics are usually associated with functions, which are the basic unit of (source) code
reuse in a program and reduce the development and maintenance costs of a program by making the code
modular. The interface of a function is captured by itsfunction prototype.

The source-level concept of a function may not be directly reflected at the binary code level, since
functions at the source level can be inlined, split into non-contiguous binary code fragments, or can exit
using jumps instead of return instructions (e.g., due to tail-call optimizations). Despite this blurring, it is
possible to define anassembly functionabstraction at the binary level for which an extracted prototype gives
a clean interface when the underlying functionality is well modularized. Thus, we focus on identifying the
interface and extracting thebodyof such function abstractions, the details of which we turn to next.

2.2 Problem Definition

To reuse functions from program binaries, we first need a function abstraction that captures our definition of
what a function is in binary code.

Function abstraction. We define abasic blockto be a sequence of instructions with one entry point and
one exit point. Basic blocks are disjoint and partition the code in an executable. We define anassembly
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functionto be a collection of basic blocks with a singleentry point, which is the target of the instruction that
transfers control from the external code into the assembly function code, and one or moreexit points, which
are instructions that transfer control to external code not belonging to the function. All code reachable from
the entry point before reaching an exit point constitutes the body of the assembly function, except that code
reachable only through call instructions before corresponding return instructions is instead part of the called
function. In other words, the body of a function is assumed to continue with the next instruction after a call
instruction. An exit point can be a return or interrupt instruction. Our definition does not include assembly
functions with multiple entry points, which we treat as multiple (partially overlapping) assembly functions,
each including all code reachable from one entry point to any exit point.

If one assembly function jumps to another, this definition considers the blocks following the jump target
to be part of the assembly function to extract. We can further extend our definition of an exit point to include
jumps to the entry point of any other assembly function in the program’s binary or in an external dynamic
linked library (DLL). For this we need a list of entry points for other assembly functions, which can be given
or approximated by considering any target of a call instruction to be an entry point.

Problem definition. The problem of assembly function reutilization is defined as: given the binary of a
program and the entry point of an assembly function in the binary, identify the interface and extract the
instructions and data dependencies that belong to the assembly function so that it is self-contained and can
be reused by external C code. The extracted function consists of both an inline assembly function with a C
prototype and a header file containing the function’s data dependencies. The problem definition when the
code fragment is not an assembly function is the same, except that it requires the exit points to be given.

2.3 Scope

Reusing an arbitrary assembly function is extremely challenging because the function interface can be con-
voluted and the function can have complex side effects. To limit the scope of the problem we make the
following assumptions about the function to be extracted:

• Since our approach uses dynamic analysis, we assume that we can execute the function at least once.
If some specific input is needed to reach the function, we assume we are provided with such input.

• The function has a fixed parameter list. Thus, we exclude functions with variable-length list of argu-
ments such asprintf.

• The function is not passed complex recursive structures such as lists or trees (pointers to single-level
structures are supported).

• The function does not call system calls directly (e.g., through interrupt orsysenter instructions)
but instead uses system calls only through well-known functions that are available in the target system
where the function is reused (e.g., the standard C library, or the Windows API if the target system is
Windows-based).

• The function contains no code that explicitly uses its own location. For example, the code should not
check if it is loaded at a specific address or offset. This restriction excludes most self-modifying code.
However, the function may still reference global addresses through standard position-independent-
code and dynamic linking: relocatable and non-relocatable code are both supported.

An important class of functions that satisfy these constraints aretransformation functions. Transfor-
mation functions include encryption and decryption, compression and decompression, code packing and
unpacking, checksums, and generally any function that encodes given data in a different format. Such func-
tions are usually well-contained, have clean interfaces, limited side effects, and are interesting for many
security applications.

Handling obfuscation. Our approach can be applied to both benign code and malware. When applying it
to malware we need to consider the obfuscation techniques that malware often uses. Common obfuscation
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Figure 1: Our assembly function reutilization approach. Thecore of our approach is the function extraction
step implemented by BCR. The three dark gray modules in function extraction have been specifically de-
signed for this work. The execution monitor, disassembler, and semantics inference module (light gray) are
reused from previous systems.

techniques used to hamper static analysis such as binary packing, adding unnecessary instructions, or replac-
ing calls with indirect jumps do not affect our hybrid disassembly approach because it uses dynamic analysis
to complement static disassembly. However, a premise of our approach is that we can observe a sample’s
execution in our analysis environment (based on a system emulator). Thus, like other dynamic approaches,
our approach can be evaded using techniques that detect virtualized or emulated environments [25].

2.4 Approach and System Architecture

Our assembly function reutilization approach comprises three steps:dynamic analysis, hybrid disassembly,
and function extraction. Figure 1 shows the three steps. In the dynamic analysis step the program is run
inside theexecution monitor, which is an emulator based on QEMU [12, 39] that can produce execution
traces containing the executed instructions, the contents of the instructions’ operands and optional taint
information. The execution monitor tracks when execution reaches a given entry point and when it leaves
the assembly function via an exit point. When an exit point is reached, the execution monitor produces a
memory dump, i.e., a snapshot of the process memory address space. This step may be repeated to produce
multiple execution traces and memory dumps.

In the hybrid disassembly step, BCR recovers the instructions comprising the function’s body using a
combination of static and dynamic analysis. It first tries to statically disassemble as much as possible from
the memory dump starting at the function’s entry point, using the IDA Pro commercial disassembler [3].
Then, it uses the information from the execution traces generated by the dynamic analysis to resolve indirect
jumps and calls, and invokes the static disassembler to disassemble instructions at those locations. If the
binary is not packed, static disassembly can be performed directly on the program binary, otherwise the
memory dump produced during the dynamic analysis step is used. The hybrid disassembly step outputs the
disassembled instructions belonging to the function body.

The core of our approach is the function extraction step. It is implemented by BCR and consists of three
sub-steps. Theinterface identification moduleidentifies the function’s parameters and outputs (i.e., the
function prototype). Thebody extraction modulearranges the disassembled instructions into basic blocks,
and rewrites addresses in jumps and table accesses to use labels. Finally, thecode generation moduletakes as
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input the function prototype and the control flow graph of the assembly function, and produces as output the
C files with the function and header files with its data dependencies. The interface identification module, the
body extraction module, and the code generation module have been specifically designed and implemented
in this work. The execution monitor [12,39], disassembler [3], and semantics inference module [22] are pre-
existing tools. We detail the interface identification module in Section 3, and the body extraction module
and code generation module in Section 4.

2.5 Running Example

Figure 2: Running example. At the
top is the source code for theencode
function and below the extracted ver-
sion of the assembly function.

Figure 2 shows our running example. At the top is the source code
for theencode function, which readslen characters from buffer
src, transforms them using the static tableenc tbl, and writes
them to thedst buffer. Below it is the assembly function corre-
sponding to theencode function, extracted by BCR from the pro-
gram binary. The large boxes in the figure show the C prototype pro-
duced by the interface identification module, and the prologue and
epilogue introduced by the code generation module. The smaller
boxes show the additional elements in the body of the function that
have been rewritten or modified to make the function stand-alone.
The rest are the unmodified assembly instruction extracted by the
body extraction module. Also produced, but omitted from the fig-
ure, is a header file defining a table calledtbl 004000000, con-
taining a memory dump of the original module.

3 Function Prototype Identification

The goal of function prototype identification is to build a C func-
tion prototype for the assembly function so that it can be reused
from other C code. The C prototype comprises the function’s name
and a list of itsformal parameters. However, formal parameters do
not directly appear at the binary code level, so BCR works with a
binary-level abstraction, which we term anassembly parameterand
describe next. At the same time, we collect some additional infor-
mation, such as the parameter length or its semantics. This infor-
mation does not directly appear in the prototype, but it is needed for
interfacing with the extracted code. In the remainder of this section
we describe how to identify the prototype of an assembly function.
The process for identifying the prototype of an arbitrary binary code
fragment is analogous.

Parameter abstraction.An assembly parameter plays a role for an
assembly function analogous to a formal parameter for a C function,
specifying a location representing an input or output value. But instead of being referred to by a human-
written name, assembly parameters are identified with a location in the machine state. To be specific, we
define assembly parameters with five attributes:

1. Theparameter typecaptures whether it is only an input to the function (IN), only an output from the
function (OUT) or both (IN-OUT). An example of anIN-OUT parameter is a character buffer that the
assembly function converts in-place to uppercase.
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2. Theparameter locationdescribes how the code finds the parameter in the program’s state. A parame-
ter can be found on the stack, in a register, or at another location in memory. For stack parameters, the
location records the fixed offset from the value of the stack pointer at the entry point; for a register,
it specifies which register. Memory locations can either be a fixed location, a global, or a location
pointed by another pointer parameter, perhaps with an additional offset. BCR also specially classifies
globals that are accessed as tables via indexing from a fixed starting address, recording the starting
address and the offset.

3. Theparameter lengthcan be either fixed or variable. A variable length could be determined by the
value of another length parameter, or the presence of a known delimiter (like a null character for a
C-style string).

4. Theparameter semanticsindicates how its value is used. Parameters have pointer or length semantics
if they are used to identify the location and size of other parameters, as previously described. Our
parameter abstraction supports a number of semantic types related to system operations, such as IP
addresses, timestamps, and filenames. AnUNKNOWN type represents a parameter whose semantics
have not been determined.

5. Theparameter value listgives the values BCR has observed the parameter to take over all assembly
function executions. This is especially useful if the parameter’s semantics are otherwise unknown: a
user can just supply a value that has been used frequently in the past.

Overview. The interface identification module identifies the assembly parameters using a dynamic analysis
that takes as input the execution traces produced by the execution monitor. It consists of three steps. For
each assembly function execution, it identifies a list of assembly parameters used by the assembly function
in that run (Section 3.1). Next, it combines the assembly parameters from multiple runs to identify missing
parameters and generalizes the parameter attributes (Section 3.2). Finally, it identifies additional semantics
by running the assembly function again in the execution monitor using the parameter information and a taint
tracking analysis (Section 3.3). Later, in Section 4.2, we will explain how the code generation module trans-
lates the assembly parameters produced by the interface identification module into the formal parameters
and outputs the C function prototype.

3.1 Identifying the Assembly Parameters from a Function Run

For each function run in the execution traces the interface identification module identifies the run’s assembly
parameters. Because there are no variables at the binary level (only registers and memory), this module
introduces abstract variables (sometimes called A-locs [20]) as an abstraction over the machine-level view
to represent concepts such as buffers and stack parameters. These variables must be sufficiently general to
allow for rewriting: for instance, the addresses of global variables must be identified if the variable is to
be relocated. A final challenge is that because the code being extracted might have been created by any
compiler or written by hand, BCR must make as few assumptions as possible about its calling conventions.

In outline, our approach is that the interface identification module first identifies all the bytes in the pro-
gram’s state (in registers or memory) that are either an input or an output of the assembly function, which
we call input locationsandoutput locations, respectively. It then generalizes over those locations to recog-
nize abstract locations and assembly parameters. To get the best combination of precision and efficiency,
we use a combination of local detecting of instruction idioms, and whole-program dataflow analysis using
tainting and symbolic execution. In the remainder of this section we refer to an assembly parameter simply
as “parameter” for brevity, and use the term “formal parameter” to refer to the parameters in the C function
prototype. Next, we define a program location and what input and output locations are.

Program locations. We define aprogram locationto be a one-byte-long storage unit in the program’s
state. We consider four types of locations:memory locations, register locations, immediate locations, and
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Step Description
1 Identify stack and table accesses
2 Identify input and output locations
3 Remove unnecessary locations (e.g., saved registers, ESP, return address)
4 Identify input and input-output pointers by value
5 Split input locations into parameter instances using pointer, stack and table access information
6 Identify input parameter pointers by dataflow
7 Split output locations into parameter instances using pointer information
8 Identify output parameter pointers by dataflow

Table 1: Summary of parameter identification process for a function run.

constant locations. Each memory byte is a memory location indexed by its address. Each byte in a register
is a register location; for example, the 32-bit register EAX has four locations EAX(0) through EAX(3), two
of which are also the registers AL and AH. An immediate location corresponds to a byte from an immediate
in the code section of some module, indexed by the offset of the byte with respect to the beginning of the
module. Constant locations play a similar role to immediate locations, but are the results of instructions
whose outputs are always the same. For example, one common idiom is to XOR a register with itself (e.g.,
xor %eax, %eax), which sets the register to zero.

Input locations. We define an input location to be a register or memory location that is read by the function
in the given run before it is written. Identifying the input locations from an execution trace is a dynamic
dataflow-based counterpart to static live-variables dataflow analysis [35], where input locations correspond
to variables live at function entry. Like the static analysis, the dynamic analysis conceptually proceeds
backwards, marking locations as inputs if they are read, but marking the previous value of a location as
dead if it is overwritten. (Since we are interested only in liveness at function entrance, we can use a forward
implementation.) The dynamic analysis is also simpler because only one execution path is considered, and
the addresses in the trace can be used directly instead of conservative alias analysis. This basic determination
of input locations is independent of the semantics of the location, but as we will explain later not all input
locations will be treated as parameters (for instance, a function’s return address will be excluded).

Output locations. We define an output location to be a register, memory, or constant location that is written
by the extracted function and read by the code that executes after the function returns. Extending the analogy
with compiler-style static analysis, this corresponds to the intersection of the reaching definitions of the
function’s code with the locations that are live in the subsequent code. Like static reaching definitions [35],
it is computed in a single forward pass through the trace.

Our choice of requiring that values be read later is motivated by minimizing false positives (a false
positive output location translates into an extra parameter in the C function prototype). This requirement
can lead to false negative results on a single run, if an output value happens not to be used under some
circumstances. However, our experience is that such false negatives can be well addressed by combining
multiple function runs, so using a strict definition in this phase gives the best overall precision.

Approach. The input and output locations contain all locations belonging to the assembly parameters and
globals used by the assembly function, without regard to calling conventions. In addition to identifying
them, the interface identification module needs to classify the input and output locations into higher level
abstractions representing parameters. Also, it needs to identify whether a parameter corresponds to a stack
location, to a global, or is accessed using a pointer. The overall parameter identification process from one
function run is summarized in Table 1 and described next.

For efficiency, the basic identification of parameters is a single forward pass that performs only local
analysis of instructions in the trace. It starts at the entry point of one execution of a function, and uses one
mode to analyze both the function and the functions it calls, without discerning between them (for instance,
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a location is counted as an input even if it is only read in a called function), and another mode to analyze
the remainder of the trace after the function finishes. For each instruction, it identifies the locations the
instruction reads and writes. For each location, it identifies the first and last times the location is read and
written within the function, as well as the first time it is read or written after the function. Based on this
information, a location is classified as an input location if it is read inside the function before being written
inside the function, and as an output location if it is written in the function and then read outside the function
before being written outside the function; observe that a location can be both an input and an output.

At the same time, the analysis classifies accesses as stack or table accesses by a local matching of
machine code idioms. The ESP register is always considered to point to the stack. The EBP register is only
considered to point to the stack if the difference between its value and that of ESP at function entrance is a
small constant, to support both code that uses it as a frame pointer and code that uses it as a general-purpose
integer register. Then, a memory access is a stack access if it uses a stack register as a starting address and
has a constant offset. On the other hand, a memory access is classified as a table access if its starting address
is a constant and the offset is a non-stack register. The starting address and offset values in stack and table
accesses are recorded for future use.

Excluding unnecessary input locations.The input locations given by the simple liveness-style definition
above include several kinds of locations with bookkeeping roles in function calls which should not be con-
sidered parameters, so we next discuss how to exclude them. To exclude the return address, the interface
identification module ignores any memory locations written by a call instruction or read by a return instruc-
tion during the function execution. To exclude the stack pointer, it ignores any access to ESP. When code
calls functions in a dynamically linked library, it fetches the real entry point of the function from an export
table, but we exclude such loads.

Most complex is the treatment of saved registers. For instance, we define a stack location to be used for
saving the register EBX if the contents of EBX are first saved in that location with a push instruction, and
later restored to EBX with a pop instruction. But the location is not a saved register location if the value
is popped to a different register than it was pushed from, or if the stack value is otherwise accessed either
before or after the pop. Conventionally, the stack is used to save certain registers designated by the calling
convention if a called function modifies them, but our analysis is independent of the calling convention’s
designation: it simply excludes any location used only for saving a register.

Identifying pointers. A final building block in identifying parameters is to identify locations that hold
pointers. The interface identification module uses a combination of two approaches for this task: an in-
expensive value-based method that can be applied on all locations, and a more expensive dataflow-based
method that works by creating a symbolic formula and is applied selectively. To detect a pointer by value,
BCR simply checks each sequence of four consecutive input locations (pointers are four bytes on our 32-bit
architecture) to see if their value forms an address of another input or output location. However, this simple
approach can fail to detect some pointers (for instance, the address of a buffer that was only accessed with
non-zero indexes), so we also implement a more sophisticated approach.

To identify more pointers, the interface identification module uses a symbolic execution approach using
our Vine system [16] to analyze an indirect memory access. The input locations to the function are marked
as symbolic variables, and the module computes a formula for the value of the effective address of the access
in terms of them, using dynamic slicing [19]. It then performs algebraic simplifications and constant folding
on the formula, and checks whether it has the form of a 32-bit input plus a constant. If so, the input locations
are considered a pointer, and the constant an offset within the region the pointer points to. (The reverse
situation of a constant starting address and a variable offset does not occur, because it would already have
been classified as a global table.) Though precise, this symbolic execution is relatively expensive, so the
interface identification module uses it only when needed, as we will describe next.
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Identifying assembly parameters from input and output locations. Once the input and output locations
have been identified and unnecessary locations removed, the interface identification module identifies input
and input-output pointers by value as explained above. Then it uses the pointers, stack, and table accesses to
classify the input and output locations into assembly parameters. Each parameter is a contiguous region in
memory (or a register), but two distinct parameters may be adjacent in memory, so the key task is separating
a contiguous region into parameters. The module considers a location to be the start of a new parameter if
it is the start of a pointer, the address after the end of a pointer, or the location of a pointer, stack, or table
access. With the information found so far, the interface identification module can determine the parameter
type, location, and value, and if the parameter has pointer semantics. The parameter length is provisionally
set to the length seen on this run.

Then, the interface identification module attempts to further classify any parameters that are in memory
but are not on the stack and are not known globals by applying the dataflow-based pointer identification
analysis. Specifically, it checks whether the access to the starting location of the parameter was a pointer
access; if so, it updates the type of the pointed-to parameter and the semantics of the pointer parameter
accordingly. After classifying the input locations and pointers in this way, the module goes on to classify
the output locations similarly, and to identify and classify other pointers that point to them.

3.2 Combining Assembly Parameters from Multiple Function Runs

The set of assembly parameters identified from a single run may be incomplete, for instance if a parameter
is used only in a limited way on a particular execution path, likesrc anddst in Figure 2. Therefore the
interface identification module further improves its results by combining the information about parameters
identified on multiple runs.

The final set of parameters identified is the union of the parameters identified over all runs, where
parameters are considered the same if they have the same parameter location. When parameters with the
same location differ in other attributes between runs, those attributes are merged as follows:

• The parameter type generalizes to input-output if it was input in some runs and output in others.
• The parameter length generalizes to variable-length if it was fixed-length in some runs and variable-

length in others, or if it had differing lengths across runs.
• The parameter semantics generalizes to any non-unknown value if it was a known value in some runs

and unknown in others (e.g., a parameter is considered a pointer if it was sometimes identified to
be one, but considered unknown on runs when it was NULL). On the other hand, the semantics are
replaced with unknown if they had conflicting values on different runs.

• The parameter value list is the union of all the observed values.

3.3 Identifying Parameter Semantics

In addition to the declared type of a parameter included in the C prototype, it is also common (e.g., in MSDN
documentation [9]) to provide additional information in text or a comment that explains how the parameter
is used; what we refer to as itssemantics. For instance, oneint parameter might hold the length of a buffer,
while another is an IP address. We next describe the techniques the interface identification module uses to
identify such parameter semantics.

Two kinds of semantics that occur frequently in transformation functions as part of specifying other
input and output parameters are pointers and lengths. As described above, the parameter identification
process finds pointer parameters at the same time it identifies the parameters they point to. To identify
length parameters, their targets, as well as variable-length parameters that use a delimiter to mark the end of
the parameter (e.g., null-terminated strings), we leverage previously proposed protocol reverse engineering
techniques [24,43] based on taint tracking.
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The interface identification module also builds on taint tracking to detect semantics related to system
operations such as IP addresses, timestamps, ports, and filenames, using a kind of type inference [22].
Certain well-known functions take inputs or produce outputs of a particular type, so BCR uses taint tracking
to propagate these types to the target function (the one being extracted) if an output of a well-known function
is used as an input to the target function, or an output of the target function is an input to a well-known
function. For instance, the argument to theinet ntoa function is an IP address, so an output parameter
that is used to derive that argument must itself be an IP address. Conversely, if an input parameter is based
on the return value ofRtlGetLastWin32Error, it must be an error code. Currently, BCR supports 20
semantics, the 18 semantics defined in [22], plus “pointer” and “unknown”. A similar approach could also
be used at the instruction level to select a more specific C type (such asfloat rather thanint), but we
have not seen a need for this in security applications.

Taint-tracking-based semantics inference takes advantage of the execution monitor’s support for function
hooks, which are instrumentation code executed just before and/or just after the execution of a chosen
function. Hooks added after the execution of well-known functions and the target function taint their outputs,
and hooks before their execution check if their inputs are tainted. Because such hooks can only be added to
the target function after its parameters have been identified, semantics inference requires an extra run of the
function in the execution monitor.

4 Function Body Extraction and C Code Generation

In this section we first present how the body extraction module extracts the instructions that form the body
of an assembly function, and then describe how the code generation module produces a C function with an
inline-assembly body from the output of the interface identification module and the body extraction module.
The key challenges are that the instructions come from a stripped binary, so static disassembly would be
unable to locate all the relevant instructions, and that the extracted code uses a different calling convention
that C code expects. For brevity, we use “C function” to refer to a function with a C prototype and an
inline-assembly body.

4.1 Function Body Extraction

Extracting the function body is a recursive process that starts by extracting the body of the given function
and then recursively extracts the body of each of the functions that are descendants of this function in
the function call graph. The body extraction module avoids extracting well-known functions that may be
available in the system where the C function is going to be recompiled, such as functions in the standard C
library or in the Windows Native API. This increases portability: for example if a function from a Windows
executable usesstrcpy from the standard C library, it can be recompiled in a Linux system making a
call to the localstrcpy function. In other cases, portability is not possible because the function may not
have a direct replacement in the target OS (e.g., there is no direct replacement in Linux for NtReadFile), so
this optimization is not performed. For instance, in our running example, shown in Figure 2, theencode
function callsmemset; since it is part of the C library, it is skipped. For each function to extract, the body
extraction module uses a combination of dynamic and static analysis.

Hybrid disassembly.The body extraction module useshybrid disassemblythat combines static disassembly
from the program binary or a memory dump with dynamic information from execution traces [36]. Static
disassembly provides better coverage of code that was not executed on a particular run, but dynamic analysis
provides better coverage of indirect jumps; a hybrid of both works best. If the program binary is not packed,
then it can be directly disassembled, but for packed binaries BCR uses the memory dump taken by the
execution monitor at the exit point of the function. It is important to take the dump at the end of the
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function’s execution so it contains only pages that have beenloaded into memory (not pages swapped out to
disk or not yet loaded); only after execution can we be sure the relevant pages are resident.

BCR uses IDA Pro [3] as its static disassembler and starts disassembling at the given function entry
point. In the presence of indirection, the static disassembler may miss instructions because it can not resolve
the instructions’ targets. Thus, the body extraction module collects the targets of all indirect jumps and calls
seen in the execution traces and directs the static disassembler to continue disassembling at those addresses.
For example, in Figure 2, the call to the memset function was originally a direct call to a stub that used an
indirect jump intomemset’s entry point in a dynamic library. The body extraction module resolves the
target of the jump and uses the information about exported functions provided by the execution monitor to
determine that the function is the standardmemset.

In addition, BCR uses a dataflow-based approach to statically identify the targets of jump tables, another
class of indirect jumps often used to implement switch statements [26]. Thus, the body extraction module
uses static disassembly when possible and incorporates additional information when it encounters indirec-
tion. For each function, hybrid disassembly stores the disassembled basic blocks, and records the targets of
indirect calls and jumps. As the hybrid disassembly progresses, the control flow graph is recovered.

Rewriting call/jumps to use labels. Once the C function is recompiled it will almost certainly be placed
at a different address, so the body extraction module needs to make the code relocatable. To enable this, it
inserts a label at the beginning of each basic block. Then, it rewrites the targets of jump and call instructions
to use these labels. If the target of a jump instruction has not been recovered by the hybrid disassembly, it is
rewritten to use a unique missing block label that exits the function with a special error condition. Figure 2
uses small boxes to highlight the inserted block labels and the rewritten call/jump instructions. Rewriting
the call/jump instructions to use labels also enables a user or a subsequent tool (like the SFI tool discussed
in Section 5.5) to instrument the function or alter its behavior by inserting new instructions in the body.

Rewriting global and table accesses.The extracted C function is composed of a C file with the assembly
function and a header file. The header file contains a memory dump of the module containing the function
to extract, taken at the function’s exit point on a given run. The body extraction module rewrites instructions
that access global variables or tables to point to the corresponding offsets in the memory dump array. This
way the extracted function can access table offsets that have not been seen in the execution traces. In our
running example, the header file is not shown for brevity, but the array with the contents from the memory
dump is calledtbl 004000000 and the instruction that accessesenc tbl has been rewritten to use the
label0x3018+tbl 00400000 which is the first byte ofenc tbl in the memory dump. The memory
dump is taken at the function’s exit point, but if the interface identification module discovers any global
input parameters, it ensures that their values are copied into the dump at function entry.

An alternative approach would be to create separate C arrays and variables for each global parameter,
which would reduce the space requirements for the extracted function. Though this would work well for
scalar global variables, it would be difficult to infer the correct size for tables, since the binary does not
contain bounds for individual variables, and code compiled from C often does not even have bounds checks.
(An intermediate approach would be to estimate the size of a table by multiplying the largest observed offset
by a safety factor; this would be appropriate if it could be assumed that testing covered at least a uniform
fraction of the entries in each table.)

4.2 C Code Generation

The code generation module writes the output C files using the information provided by the interface iden-
tification module and the body extraction module. To encode the function body the code generation module
uses GCC’s inline assembly feature [2]. It wraps the function body in an assembly block and then puts the
assembly block inside a function definition with a C function prototype, as shown in Figure 2. In addition
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it creates a C header file containing the memory dump as an array. Though our current implementation is
just for GCC, the inline assembly features of Visual C/C++ [10] would also be sufficient for our purposes.
Some of those features, such as “naked” inline assembly functions for which the compiler does not generate
a prologue or epilogue, could make the process more convenient.

The assembly block contains the assembly instructions in AT&T syntax, and the list of inputs, outputs,
and clobbered registers. These are filled using the parameter information provided by the interface identi-
fication module. When GCC compiles the function, it will add prologue and epilogue code that affects the
stack layout, so even if the extracted function originally used a standard calling convention, it would not
find stack parameters in the expected place. To overcome this problem, the code generation module inserts
wrapper code at the beginning of the function that reads the parameters from the C prototype (as inputs to
the assembly block), puts them in the stack or register locations expected by the extracted function, and
performs a call to the extracted entry point. After the call instruction it inserts a jump to the end of the
function so that the epilogue inserted by GCC is executed. The second box in Figure 2 shows this wrapper.

The C prototype comprises the function name and the formal parameters of the function. The function
name is based on its entry point (func 00401000 in the running example), and each parameter’s C type
is based on its size and whether it is a pointer. Input and input-output parameters located in the stack or
registers appear first, with stack parameters appearing in order of increasing offset (this means that if the
extracted function used the most common C calling convention, their order will match the original source).
For each output parameter returned using a register, the code generation module adds an additional pointer
formal parameter at the end of the C prototype and uses the outputs list in the assembly block to let GCC
know that the register needs to be copied to the pointed-to location. Additionally, for output global or table
parameters the code generation module adds a C variable corresponding to the start address of the global or
table in the memory dump. This makes the function’s side effects available to other C code.

Each formal parameter is also annotated with a comment that gives information about the attribute values
for the corresponding assembly parameter such as the parameter type and its semantics. These are useful for
a user that wants to reuse the function. In addition, it prints the most common value seen for each parameter
during the multiple executions along with the percentage of executions where the parameter showed that
value. This allows the user to select a value for the parameter when the parameter semantics are unknown.
The function prototype is shown in the first box in Figure 2.

5 Evaluation

This section describes the experiments we have performed to demonstrate that our binary code reutilization
approach and implementation is effective for security applications such as rewriting encrypted malware
network traffic and static unpacking, that non-function fragments can be extracted to give useful functions,
and that extracted functions can be used safely even though they come from an untrusted source.

5.1 Rewriting MegaD’s C&C Protocol

MegaD is a prevalent spam botnet that accounted for 35.4% of all spam in the Internet in a December 2008
study [7], and still accounts for 9% as of September 2009 [8]. Recent work reverse-engineers MegaD’s
proprietary, encrypted, C&C protocol [22], and demonstrates rewriting messages on the host by modifying
a buffer before encryption. In this section we show that our assembly function reutilization approach enables
the same C&C rewriting on a network proxy, by extracting the bot’s key generation and encryption functions.

Function extraction. MegaD’s C&C messages on port 443 use a proprietary protocol and encryption
algorithm (not SSL), and the bot contains functions for block encryption, block decryption, and a common
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key generator. We identify the entry points of the three functions using previously proposed techniques that
flag functions with a high ratio of arithmetic and bitwise operations [22,41].

First, we use BCR to automatically extract the key generation function. The identified prototype shows
that the function has two parameters and uses two global tables. The first parameter points to an output
buffer where the function writes the generated key. The second parameter is a pointer to an 8 byte buffer
containing the seed from which the key is generated. Thus, the function generates the encryption key from
the given seed and the two tables in the binary. Other attributes show that all calls to the key generation
function use the same “abcdefgh” seed, and that the two tables are not modified by the function.

Although the entry points for the block encryption and decryption functions are different, the first in-
struction in the block decryption function jumps to the entry point of the block encryption function, so here
we describe just the encryption function. The prototype extracted by BCR has 3 parameters and uses 6
global tables. The first parameter points to an input buffer containing a key (as produced by the key gener-
ation function). The other two parameters are pointers to the same 8 byte input-output buffer that on entry
contains the unencrypted data and on exit contains the encrypted data.

To encrypt an arbitrary message, the proxy must encrypt variable-length data, not just 64-bit blocks.
We tried extracting the function that calls the block encryption function, but as indicated by its prototype it
performed other tasks we do not wish to extract, such as setting up the network and parsing the message. So
instead we write our own wrapper for the block encryption function.

To verify that the extracted encryption/decryption function works correctly, we augment a BinPac gram-
mar for the unencrypted MegaD C&C protocol, reported in earlier work [22], to use the extracted function
for decryption, and test it using a BinPac parser from Bro [37] and C&C messages extracted from network
traces. Using the new grammar, the parser succeeds on all the encrypted MegaD C&C messages found in
the traces.

Network-based C&C rewriting. To perform network rewriting we must deploy the encryption/decryption
function, as well as the session keys, in a network proxy. Such a proxy will only be effective if the functions
and keys match those in the bots, so to estimate the rate at which they change we repeated our analysis with
an older MegaD sample. According to malware analysis online services [17], our primary sample was first
seen in the wild on December 2008, and our older one on February 2008. Although there are differences
between both samples, such as the older sample using port 80 instead of 443 for its C&C, the parser, using
the decryption function and keys extracted from the December sample, is able to successfully parse the C&C
messages from the February sample. In addition, we extract the key generation and encryption functions
from the February sample and compare them with the ones from the December sample. Although there are
syntactic differences, the versions are functionally equivalent, producing the same outputs on more than a
billion randomly generated inputs. Thus we conclude that the relevant algorithms and keys, including the
session key, have been unchanged during the time span of our samples.

To show how our assembly function reutilization approach enables live rewriting on the network, we
build a network proxy that is able to decrypt, parse, modify and re-encrypt MegaD C&C messages that it
sees on the network. To test the proxy we reproduce an experiment from [22], but perform rewriting on the
network rather than on the host. The experiment proceeds as follows. We run a live MegaD bot in a virtual
environment that filters all outgoing SMTP connections, for containment purposes.

To start, suppose that no proxy is in use. The C&C server sends a command to the bot ordering it to
test its ability to send spam by connecting to a test mail server. Because the virtual environment blocks
SMTP, the bot sends a reply to the C&C server indicating that it cannot send spam, and afterwards no more
spam-related messages are received.

Next we repeat the experiment, adding a network proxy that acts as a man-in-the-middle on traffic
between the C&C server and the bot. For each message sent by the bot, the proxy decrypts it and checks
if it is a message that it needs to rewrite. When the bot sends the message indicating that it has no SMTP
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capability, the proxy, instead of relaying it to the C&C server, creates a different message indicating that the
SMTP test was successful, encrypts it, and sends it to the C&C server instead. (It would not be sufficient
for the proxy to replay a previous encrypted success message, because the message also includes a nonce
value selected by the C&C server at the beginning of each dialog.) With the proxy in place, the bot keeps
receiving spam-related messages, including a spam template and lists of addresses to spam, though it is
unable to actually send spam.

5.2 Rewriting Kraken’s C&C Protocol

Kraken is a spam botnet that was discovered on April 2008 and has been thoroughly analyzed [4,5,11,33].
Previous analysis uncovered that Kraken (versions 315 and 316) uses a proprietary cipher to encrypt its C&C
protocol and that the encryption keys are randomly generated by each bot and prepended to the encrypted
message sent over the network [4, 11]. Researchers have manually reverse-engineered the decryption func-
tion used by Kraken and provided code to replicate it [4]. In this paper, we extract Kraken’s decryption
function using our automatic approach and verify that our extracted function is functionally equivalent to
the one manually extracted in previous work. Specifically, when testing the manually and automatically
extracted function on millions of random inputs, we find their outputs are always the same. In addition,
we extract the corresponding encryption function and a checksum function, used by the bot to verify the
integrity of the network messages.

Similarly to the MegaD experiment described in Section 5.1, we build a network proxy that uses the
extracted encryption, decryption, and checksum functions, as well as the protocol grammar, and use it to
rewrite a C&C message to falsify the result of an SMTP capability check. Unfortunately (for our purposes),
all Kraken samples that we have access to do not connect to any live C&C server on the Internet. Thus,
to verify that the message rewriting works we use a previously published Kraken parser [6]. The rewritten
message parses correctly and has the STMP flag correctly modified (set to one).

5.3 Reusing Binary Code that is not an Assembly Function

Next we show that our approach enables reusing a binary code fragment that does not correspond to a com-
plete assembly function, but has a clean interface and performs an independent task. We extract unpacking
code from two versions of a trojan horse programZbotused primarily to steal banking and financial infor-
mation [18]. Zbot uses two nested layers of packing. The samples, provided to us by an external researcher,
represent a typical task in the course of malware analysis: they have already had one layer of packing
removed, and we have been provided the entry points for a second, more complex, unpacking routine.

The function prototype extracted by BCR is identical for both functions. It contains two pointer param-
eters: the ESI register points to an input-output buffer containing packed data as input and a count of the
number of bytes unpacked as output, while the EDI register points to an output buffer for unpacked data.
Since ESI and EDI are not used for parameter passing in any of the standard x86 calling conventions [42],
this suggests these functions were manually-written assembly code.

Although the prototypes are the same, the unpacking functions are not functionally equivalent; they
both consist of two distinct loops, and we find that extracting these loops separately captures more natural
functional units. Examining the extracted function bodies, we find that both consist of two loops that are
separated bypusha andpopa instructions that save and restore processor state. Each loop makes its own
pass over the packed data, with the first pass applying a simpler deciphering by subtracting a hardcoded key,
and the second pass performing a more complex instruction-by-instruction unpacking. After extracting the
two loops into separate functions, we verify that the differences between the versions are only in the first
loop: the extracted version of the second loop can be reused across the sample versions. This highlights the
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General Code Extraction Parameter Identification
Function # Runs Run # Insn. # Missed # Indirect # Param. FP FN

time(sec) blocks call/jump
MegaD keygen 4 3 320 0 0 3 0 0
MegaD encrypt 6 257 732 0 0 4 0 0
Kraken encrypt 2 16 66 0 0 7 1 0
Kraken decrypt 1 2 66 0 0 6 0 0
Kraken checksum 1 179 39 0 0 4 1 0
Zbot v1151 2 15 98 0 0 2 0 0
Zbot v1652 2 17 93 0 0 2 0 0

MD5 Init 6 2 10 0 0 1 0 0
MD5 Update 6 38 110 0 1 3 0 0
MD5 Final 7 31 67 0 3 2 0 0
SHA1 Init 1 8 11 0 0 1 0 0
SHA1 Update 1 36 110 0 1 3 0 0
SHA1 Final 2 36 76 0 3 2 0 0

Table 2: Evaluation results. At the top are the functions extracted during the end-to-end applications and at
the bottom some additional functions extracted from the OpenSSL library.

fact that as long as a binary code fragment has a clean interface and performs a well-separated task, it can
be reused even if it does not correspond to a complete function in the original machine code.

5.4 Quantitative Summary of Function Extraction

Table 2 summarizes the extraction results for all functions mentioned in Section 5.1 through Section 5.3 and
some additional functions that we extract from the OpenSSL library for evaluation purposes. TheGeneral
section of the table shows the number of function runs in the execution traces used as input to the function
extraction step, and the total time needed to extract the function. TheCode Extractionsection has the
number of instructions in each extracted function, the number of missed blocks and the number of indirect
call and jump instructions. TheParameter Identificationsection shows the number of parameters in the C
function prototype and the number of false positives (e.g., unnecessary parameters in the prototype) and false
negatives (e.g., missing parameters in the prototype). For the OpenSSL functions, the false positives and
negatives are measured by comparison with the original C source code. For the malware samples, no source
is available, so we compare with our best manual analysis and (for Kraken) with other reported results.

The results show that a small number of executions is enough to extract the complete function without
missing blocks or parameters. For samples without indirect jumps or calls, static disassembly recovers
all basic blocks. For the samples with indirection, the dynamic information resolves the indirection and
enables the static disassembler to find all the instructions in the function body. The Kraken checksum and
MegaD encrypt samples are significantly slower to extract than the other samples. This is because they have
larger number of invocations of the dataflow-based pointer analysis technique, which dominates the running
time. The parameter identification results show that no parameters are missed: some runs do not identify all
parameters, but combining multiple executions (Section 3.2) gives complete results. For the functions from
OpenSSL, the parameters include fields in a context structure that is passed to the functions via a pointer.
Two extra (false positive) parameters are identified, both of which are output parameters reported as returned
in the ECX register. These are caused by a compiler optimization (performed by the Microsoft compiler,
for instance) that replaces the instructionsub $4,%esp to reserve a location on the stack with the more
compact instructionpush %ecx, which has the same effect on the stack pointer and also copies a value
from ECX that will later be overwritten. When this idiom occurs in the code following an extracted function
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that uses ECX internally, the interface identification module incorrectly identifies ECX as a function output.
(This phenomenon has also been noticed by other researchers [21].) Note that false positive parameters are
not a serious problem for usability: extra outputs can simply be ignored, and extra inputs do not change the
extracted function’s execution.

5.5 Software-based Fault Isolation

If the extracted functions are to be used in a security-sensitive application, there is a danger that a malicious
extracted function could try to hijack or interfere with the operation of the application that calls it. To prevent
this, we use software-based fault isolation (SFI) [40] as a lightweight mechanism to prevent the extracted
code from writing to or calling locations in the rest of the application. SFI creates separate “sandbox”
data and code regions for the extracted function, so that it can only write to its data region and it can only
jump within its code region. SFI works by adding checks just before each store or jump instruction, but the
extracted code still runs in the same address space, so calls from the application are still simple and efficient.

Specifically, we postprocess our extracted malware functions using PittSFIeld, an implementation of SFI
for x86 assembly code [34]. PittSFIeld adds new instructions for checks, and to enforce additional alignment
constraints to avoid overlapping instructions, so BCR’s translation of jumps to use labels is necessary for it
to work. PittSFIeld was previously implemented for use with the assembly code generated by GCC, so in
order to work with the hand-written assembly in the extracted functions, we generalize it to save and restore
the temporary register used in sandboxed operations, and to not assume that EBP is always a pointer to the
stack. We also make corresponding changes to PittSFIeld’s separate verification tool, so a user can check
the safety of an extracted function without trusting the person who extracted it.

6 Related Work

This section compares our approach with the manual process it aims to replace, techniques for related
extraction problems in other domains, and some other tasks that require similar algorithms.

Manual code extraction. Code extraction is a common activity in malware analysis, but it is usually
performed manually [4,5,28]. While this process can give the analyst a deep understanding of the malicious
functionality, it is also very time-consuming. Simple tool support can make some of the repetitive tasks
more convenient [1], but existing approaches still require specialized skills. Our approach allows this task
to be automated, when all that is needed is to be able to execute the functionality in another context.

Input-output formula extraction. A variant on the extraction problem is one where the functionality
to be extracted is sufficiently simple to be represented by a single formula. If the inputs and outputs of the
computation are known, such a formula can be extracted by symbolic execution. For instance, such formulas
computed between input and output system calls can be used for protocol dialog replay [23], or as a malware
signature [32]. However, a single formula is not a practical representation for more complex functionality
that includes loops or other variant control-flow paths, or uses complex data structures. (For instance, the
malware modeling tool of Kolbitsch et al. [32] falls back to using an executable slice if it cannot extract
an exact formula.) In addition to the different representation of the extracted functionality, the extraction
problem we consider here is more difficult because the inputs and outputs must be inferred.

Interface extraction from source code.Jiang and Su [30] investigate the problem of automatic interface
extraction in C source code, to allow automated random testing for fragments with equivalent behavior.
Their task of determining which variables constitute inputs and outputs of a fragment is related to the one
we tackle in Section 3, but made easier by the availability of type information. Extracting the code itself is
also easier because Jiang and Su’s code fragments are restricted by definition to contiguous statements.
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Liveness analysis.The analyses that our tool performs to identify input and output variables are the dynamic
analogues of static data-flow analyses performed by compilers, such as live variable and reaching definitions
analysis [35]. Some of the same challenges we face have also been addressed in purely static tools such as
link-time optimizers that, like our tool, must operate on binary code. For instance, link-time optimizers [29,
38] must also exclude saves of callee-saved registers from the results of naive liveness analysis.

Binary rewriting. Many of the techniques required for binary code reutilization are used in binary rewriting
and instrumentation applications. For instance, purely static disassembly provides insufficient coverage for
even benign applications on Windows/x86 platforms, so state-of-the art rewriting tools require a hybrid
of static and dynamic disassembly [36] much as we do. Cifuentes and Van Emmerik [26] introduced the
technique we adopt for locating the jump table statements used to implement switch statements as part of
their binary translation tool UQBT.

7 Conclusion

This paper performs the first systematic study of automatic binary code reutilization, which we define as the
process of automatically identifying the interface and extracting the instructions and data dependencies of a
code fragment from an executable program, so that it is self-contained and can be reused by external code.

We have proposed a novel technique to identify the prototype of an undocumented code fragment di-
rectly from the program’s binary, without access to its source code. We have designed an approach to au-
tomatically extract a code fragment from a program binary so that the code fragment is self-contained. The
extracted code fragment can be run independently of the rest of the program’s functionality in an external C
program, and can be easily tested, instrumented, or shared with other users.

We have implemented BCR, a tool that uses our approach to automatically extract an assembly function
from a program binary. We have used BCR to reuse the encryption and decryption routines from two widely
used spam botnets in a network proxy that can rewrite the malware’s C&C encrypted traffic. In addition,
we have extracted the unpacking function from a widely used trojan, and have shown that a code fragment
belonging to that function can be reused by the unpacking function for a different sample from the same
family. Finally, we have applied software-based fault isolation techniques [34] to the extracted functions to
ensure they can be used safely even though they come from an untrusted source.
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